DNA immunization with the cysteine-rich interdomain region 1 of the Plasmodium falciparum variant antigen elicits limited cross-reactive antibody responses.
نویسندگان
چکیده
The variant surface antigens of Plasmodium falciparum are an important component of naturally acquired immunity and an important vaccine target. However, these proteins appear to elicit primarily variant-specific antibodies. We tested if naked DNA immunization can elicit more cross-reactive antibody responses and allow simultaneous immunization with several variant constructs. Mice immunized with plasmid DNA expressing variant cysteine-rich interdomain region 1 (CIDR1) domains of the P. falciparum erythrocyte membrane protein 1 (PfEMP1) developed antibodies that were reactive to the corresponding PfEMP1s as measured by an enzyme-linked immunosorbent assay, flow cytometry, and agglutination of parasitized erythrocytes (PEs). We observed some cross-reactive immune responses; for example, sera from mice immunized with one domain agglutinated PEs of various lines and recognized heterologous domains expressed on the surface of Chinese hamster ovary (CHO) cells. We found no significant antigenic competition when animals were immunized with a mixture of plasmids or immunized sequentially with individual constructs. Moreover, mixed or sequential immunizations resulted in greater cross-reactive agglutination responses than immunization with a single domain. Recombinant protein (Sc y179) immunization after priming with DNA (prime-boost regimen) increased antibody titers to the homologous domain substantially but seemed to diminish the cross-reactive responses somewhat. The titer of agglutinating antibodies was previously shown to correlate with protection. Surprisingly, the agglutination titers of sera from DNA immunization were high, similar to those of pooled human hyperimmune sera. These sera also appeared to give limited low-titer variant transcending agglutination. Thus, DNA immunization appears to be a very useful tool for developing variant antigen vaccines.
منابع مشابه
CD4 T cell responses to a variant antigen of the malaria parasite Plasmodium falciparum, erythrocyte membrane protein-1, in individuals living in malaria-endemic areas.
Plasmodium falciparum erythrocyte membrane protein-1 (PfEMP-1) is a variant antigen on the surface of malaria-infected red blood cells. Antibody responses to PfEMP-1 correlate with immunity, and, therefore, PfEMP-1 may be a good candidate for a malaria vaccine. However, the specificity of CD4 T cells required for a protective variant-specific antibody response is not known. We have measured the...
متن کاملInduction of cross-reactive immune responses to NTS-DBL-1alpha/x of PfEMP1 and in vivo protection on challenge with Plasmodium falciparum.
The interactions of Plasmodium falciparum infected erythrocytes parasitized red blood cells (pRBC) with endothelial receptors and erythrocytes are mediated by multiple Duffy-binding like (DBL) and cysteine-rich interdomain region (CIDR) domains harboured in the Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1). The success of a subunit vaccine based on PfEMP1 depends on its ability ...
متن کاملB cell memory to 3 Plasmodium falciparum blood-stage antigens in a malaria-endemic area.
To gain insight into why antibody responses to malarial antigens tend to be short lived, we studied antigen-specific memory B cells from donors in an area where malaria is endemic. We compared antibody and memory B cell responses to tetanus toxoid with those to 3 Plasmodium falciparum candidate vaccine antigens: the C-terminal portion of merozoite surface protein 1 (MSP1(19)), apical membrane a...
متن کاملImmunogenicity of the Plasmodium falciparum PfEMP1-VarO Adhesin: Induction of Surface-Reactive and Rosette-Disrupting Antibodies to VarO Infected Erythrocytes
Adhesion of Plasmodium falciparum-infected red blood cells (iRBC) to human erythrocytes (i.e. rosetting) is associated with severe malaria. Rosetting results from interactions between a subset of variant PfEMP1 (Plasmodium falciparum erythrocyte membrane protein 1) adhesins and specific erythrocyte receptors. Interfering with such interactions is considered a promising intervention against seve...
متن کاملRED CELLS CD 36 Peptides That Block Cytoadherence Define the CD 36 Binding Region for Plasmodium falciparum - Infected Erythrocytes
Mature Plasmodium falciparum parasitized erythrocytes (PE) sequester from the circulation by adhering to microvascular endothelial cells. PE sequestration contributes directly to the virulence and severe pathology of falciparum malaria. The scavenger receptor, CD36, is a major host receptor for PE adherence. PE adhesion to CD36 is mediated by the malarial variant antigen, P. falciparum erythroc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Infection and immunity
دوره 71 8 شماره
صفحات -
تاریخ انتشار 2003